
Cyclistic Case Study

Jessica Y. Yang

2023-01-24

Three Main Questions

These are the three main questions that will guide the future marketing program:

• How do annual members and casual riders use Cyclistic bikes differently?

• Why would casual riders buy Cyclistic annual memberships?

• How can Cyclistic use digital media to influence casual riders to become members?

Deliverables That Will Be Produced

I will produce a report with the following deliverables in it:

• A clear statement of the business task

• A description of all data sources used

• Documentation of any cleaning or manipulation of data

• A summary of my analysis

• Supporting visualizations and key findings

• My top 3 recommendations based on my analysis

Section Guides

The deliverables will be produced through the following sections:

• Ask

• Prepare

• Process

• Analyze

• Share

• Act

Ask

Guiding questions:

• What is the problem you are trying to solve?

– This case study focuses on creating marketing strategies to influence casual
riders to convert to become Cyclistic members.

• How can your insights drive business decisions?

– My insights will be able to assist Cyclistic with the best marketing strategy to
convert casual riders to become Cyclistic members through several
important data and plots.

Key tasks:

• The business task

– The business task for this case study is to discover how Cyclistic’s casual
riders and members use their rental bikes differently and produce a strong
and strategic marketing tactic to assist casual riders in purchasing a
membership with Cyclistic.

• Key stakeholders

– Cyclistic executive team

– Director of Marketing in Cyclistic (Lily Moreno)

– Cyclistic’s marketing analytics team

Prepare

Guiding questions:

• Where is your data located?

– I retrieved and downloaded the previous 12 months of Cyclistic trip data
from a public data website. The data has been made available by Motivate
International Inc. under this license.

• How is the data organized?

– The data is produced in 4 different .csv file, each having 3 months of data in
it. The organization of each .csv file will be listed below.

• Are there issues with bias or credibility in this data? Does your date ROCCC?

– R - Reliable: The data is credible because it is public data. It does not have
any bias in it because it does not provide any rider’s personal information.
This data is originally based on the case study ‘Sophisticated, Clear, and
Polished’: Divvy and Data Visualization (Case Study) by Kevin Hartman

– O - Original: The data is original and can be validated with the original source
even though Cyclistic is a fictional company.

– C - Comprehensive: The data is comprehensive because it has all of the
critical information needed to answer the questions proposed and I am able
to find solutions for them.

https://divvy-tripdata.s3.amazonaws.com/index.html
https://ride.divvybikes.com/data-license-agreement
https://artscience.blog/home/divvy-dataviz-case-study
https://artscience.blog/home/divvy-dataviz-case-study

– C - Current: The data is not up to date, but I have acquired the most recent 12
months of data to do this analysis. The last update is on May 27th, 2020.

– C - Cited: Since this is a project from the Google Analytics Certificate, I think
the source is and should be from a credible organization.

Key tasks:

• Download data and store it appropriately

– Data is downloaded and stored in a folder on my comptuer called “Cyclistic
Case Study”.

– I have combined the 12 months of data into a .zip folder called “Trips Q1 to
Q4.zip” and uploaded it to RStudio’s project folder for use.

• Determine the credibility of the data

– As mentioned above, the data is credible because it is public data.

• Identify how data is organized

– The data is represented in 4 different .csv files and has these columns: rider’s
ID, session start and end time, bike’s ID, trip duration, start and end station
names, station’s ID, member/casual rider, gender, and birth year.

• Import the data
##I installed these packages.
install.packages("tidyverse", repos = "http://cran.us.r-project.org")

Installing package into 'C:/Users/Admin/AppData/Local/R/win-library/4.2'
(as 'lib' is unspecified)

package 'tidyverse' successfully unpacked and MD5 sums checked

The downloaded binary packages are in
C:\Users\Admin\AppData\Local\Temp\RtmporDKFE\downloaded_packages

##I loaded these packages.
library(tidyverse)

── Attaching packages
───────────────────────────────────────
tidyverse 1.3.2 ──

✔ ggplot2 3.4.0 ✔ purrr 1.0.1
✔ tibble 3.1.8 ✔ dplyr 1.0.10
✔ tidyr 1.2.1 ✔ stringr 1.5.0
✔ readr 2.1.3 ✔ forcats 0.5.2
── Conflicts ──
tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()

library(readr)
library(ggplot2)

library(readxl)
library(dplyr)
library(lubridate)

Loading required package: timechange

Attaching package: 'lubridate'

The following objects are masked from 'package:base':

date, intersect, setdiff, union

##I used readr to read rectangular data from .csv files
##I named the files by their year and quarter
Q1_2019 <- read_csv("Divvy_Trips_2019_Q1/Divvy_Trips_2019_Q1.csv")

Rows: 365069 Columns: 12
── Column specification
──
Delimiter: ","
chr (4): from_station_name, to_station_name, usertype, gender
dbl (5): trip_id, bikeid, from_station_id, to_station_id, birthyear
num (1): tripduration
dttm (2): start_time, end_time

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this
message.

Q2_2019 <- read_csv("Divvy_Trips_2019_Q2/Divvy_Trips_2019_Q2.csv")

Rows: 1108163 Columns: 12
── Column specification
──
Delimiter: ","
chr (4): 03 - Rental Start Station Name, 02 - Rental End Station Name,
User...
dbl (5): 01 - Rental Details Rental ID, 01 - Rental Details Bike ID, 03 -
R...
num (1): 01 - Rental Details Duration In Seconds Uncapped
dttm (2): 01 - Rental Details Local Start Time, 01 - Rental Details Local
En...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this
message.

Q3_2019 <- read_csv("Divvy_Trips_2019_Q3/Divvy_Trips_2019_Q3.csv")

Rows: 1640718 Columns: 12
── Column specification

──
Delimiter: ","
chr (4): from_station_name, to_station_name, usertype, gender
dbl (5): trip_id, bikeid, from_station_id, to_station_id, birthyear
num (1): tripduration
dttm (2): start_time, end_time

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this
message.

Q4_2019 <- read_csv("Divvy_Trips_2019_Q4/Divvy_Trips_2019_Q4.csv")

Rows: 704054 Columns: 12
── Column specification
──
Delimiter: ","
chr (4): from_station_name, to_station_name, usertype, gender
dbl (5): trip_id, bikeid, from_station_id, to_station_id, birthyear
num (1): tripduration
dttm (2): start_time, end_time

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this
message.

Process

Guiding questions:

• What tools are you choosing and why?

– I am using R for my main statistical analytics tool because it has all the
functions I need in order to mutate and analyze my data. I will also be able to
create data visualizations at the end when needed.

Key tasks:

• Transform the data and document the cleaning
##Since the column names are different on the Q2_2019 data set, I assigned
new names to the columns of the data frame.
colnames(Q2_2019) <- c("trip_id", "start_time", "end_time", "bikeid",
"tripduration", "from_station_id", "from_station_name", "to_station_id",
"to_station_name", "usertype", "gender", "birthyear")

##Duplicate the "start_time" column and name it "month" so I can clearly see
which month the corresponding data is for. I also relocated the new "month"
column to be behind the "end_time" column.
Q1_2019 <- Q1_2019 %>%
 mutate(month = start_time) %>%
 relocate(month, .after = end_time)

Q2_2019 <- Q2_2019 %>%
 mutate(month = start_time) %>%
 relocate(month, .after = end_time)
Q3_2019 <- Q3_2019 %>%
 mutate(month = start_time) %>%
 relocate(month, .after = end_time)
Q4_2019 <- Q4_2019 %>%
 mutate(month = start_time) %>%
 relocate(month, .after = end_time)

##Duplicate the "start_time" column and name it "date" so I can clearly see
which month the corresponding data is for. I also relocated the new "date"
column to be behind the "month" column.
Q1_2019 <- Q1_2019 %>%
 mutate(date = start_time) %>%
 relocate(date, .after = month)
Q2_2019 <- Q2_2019 %>%
 mutate(date = start_time) %>%
 relocate(month, .after = month)
Q3_2019 <- Q3_2019 %>%
 mutate(date = start_time) %>%
 relocate(date, .after = month)
Q4_2019 <- Q4_2019 %>%
 mutate(date = start_time) %>%
 relocate(date, .after = month)

##Extract numeric month date from month column.
Q1_2019$month = format(as.Date(Q1_2019$month, format = "%m"), "%m")
Q2_2019$month = format(as.Date(Q2_2019$month, format = "%m"), "%m")
Q3_2019$month = format(as.Date(Q3_2019$month, format = "%m"), "%m")
Q4_2019$month = format(as.Date(Q4_2019$month, format = "%m"), "%m")

##Extract numeric date from the date column.
Q1_2019$date = format(as.Date(Q1_2019$date, format = "%d"), "%d")
Q2_2019$date = format(as.Date(Q2_2019$date, format = "%d"), "%d")
Q3_2019$date = format(as.Date(Q3_2019$date, format = "%d"), "%d")
Q4_2019$date = format(as.Date(Q4_2019$date, format = "%d"), "%d")

##Transform the data to fix the data type inconsistencies found during the
import process so that the data can be combined into one large data frame.
Q1_2019 <- mutate(Q1_2019, from_station_id = as.numeric(from_station_id),
to_station_id = as.numeric(to_station_id))
Q2_2019 <- mutate(Q2_2019, from_station_id = as.numeric(from_station_id),
to_station_id = as.numeric(to_station_id))
Q3_2019 <- mutate(Q3_2019, from_station_id = as.numeric(from_station_id),
to_station_id = as.numeric(to_station_id))
Q4_2019 <- mutate(Q4_2019, from_station_id = as.numeric(from_station_id),
to_station_id = as.numeric(to_station_id))

##Join all data frames vertically using the rbind function.
cyclistsdata <- rbind(Q1_2019, Q2_2019, Q3_2019, Q4_2019)

##Add a column for the day of the week (week starts Sunday).
cyclistsdata <- cyclistsdata %>%
 mutate(day_of_week = start_time) %>%
 relocate(day_of_week, .after = date)
cyclistsdata$day_of_week <- wday(cyclistsdata$day_of_week)

##Remove unnecessary column in data frames ("tripduration", "birthyear",
"gender").
cyclistsdata <- cyclistsdata %>%
 select(-c(tripduration, birthyear, gender))

##Add column to calculate the total ride length in seconds.
cyclistsdata$ride_length <- as.numeric(difftime(cyclistsdata$end_time,
cyclistsdata$start_time))

##Remove all NA rows as they do not have full data.
cyclistsdatav2 <- drop_na(cyclistsdata) ##Data frame does not have any NA as
the number of observations is still the same.

#Remove all rows for when the bikes were taken out of docks for quality
checks and remove all rows that has ride_length as negative.
cyclistsdatav3 <- cyclistsdatav2[!(cyclistsdatav2$from_station_name == "HQ
QR" | cyclistsdatav2$to_station_id == "671" | cyclistsdatav2$to_station_id ==
"361" | cyclistsdatav2$ride_length < 0),] ##Data frame had 175 rows that
were taken out.

After transforming the data, it is now time to analyze the data.

##Analyze

Guiding questions:

• How should you organize your data to perform analysis on it?

– I have to make sure all the columns are correctly named and are the same
(columns do not have to be in the same order but names have be exactly the
same)

##Inspect the new data frame that has been created

colnames(cyclistsdatav3) ##Lists of column names

[1] "trip_id" "start_time" "end_time"
[4] "month" "date" "day_of_week"
[7] "bikeid" "from_station_id" "from_station_name"
[10] "to_station_id" "to_station_name" "usertype"
[13] "ride_length"

nrow(cyclistsdatav3) ##The number of rows in the data frame

[1] 3817829

dim(cyclistsdatav3) ##Dimensions of the data frame

[1] 3817829 13

head(cyclistsdatav3) ##First 6 rows of the data frame

A tibble: 6 × 13
trip_id start_time end_time month date day_of_w…¹
bikeid
<dbl> <dttm> <dttm> <chr> <chr> <dbl>
<dbl>
1 21742443 2019-01-01 00:04:37 2019-01-01 00:11:07 01 01 3
2167
2 21742444 2019-01-01 00:08:13 2019-01-01 00:15:34 01 01 3
4386
3 21742445 2019-01-01 00:13:23 2019-01-01 00:27:12 01 01 3
1524
4 21742446 2019-01-01 00:13:45 2019-01-01 00:43:28 01 01 3
252
5 21742447 2019-01-01 00:14:52 2019-01-01 00:20:56 01 01 3
1170
6 21742448 2019-01-01 00:15:33 2019-01-01 00:19:09 01 01 3
2437
… with 6 more variables: from_station_id <dbl>, from_station_name <chr>,
to_station_id <dbl>, to_station_name <chr>, usertype <chr>,
ride_length <dbl>, and abbreviated variable name ¹day_of_week

tail(cyclistsdatav3) ##Last 6 rows of the data frame

A tibble: 6 × 13
trip_id start_time end_time month date day_of_w…¹
bikeid
<dbl> <dttm> <dttm> <chr> <chr> <dbl>
<dbl>
1 25962899 2019-12-31 23:54:54 2020-01-01 00:22:02 12 31 3
5996
2 25962900 2019-12-31 23:56:13 2020-01-01 00:15:45 12 31 3
2196
3 25962901 2019-12-31 23:56:34 2020-01-01 00:22:08 12 31 3
4877
4 25962902 2019-12-31 23:57:05 2020-01-01 00:05:46 12 31 3
863
5 25962903 2019-12-31 23:57:11 2020-01-01 00:05:45 12 31 3
2637
6 25962904 2019-12-31 23:57:17 2019-12-31 23:59:18 12 31 3
5930
… with 6 more variables: from_station_id <dbl>, from_station_name <chr>,
to_station_id <dbl>, to_station_name <chr>, usertype <chr>,
ride_length <dbl>, and abbreviated variable name ¹day_of_week

str(cyclistsdatav3) ##List of columns and their data types

tibble [3,817,829 × 13] (S3: tbl_df/tbl/data.frame)
$ trip_id : num [1:3817829] 21742443 21742444 21742445 21742446
21742447 ...
$ start_time : POSIXct[1:3817829], format: "2019-01-01 00:04:37"
"2019-01-01 00:08:13" ...
$ end_time : POSIXct[1:3817829], format: "2019-01-01 00:11:07"
"2019-01-01 00:15:34" ...
$ month : chr [1:3817829] "01" "01" "01" "01" ...
$ date : chr [1:3817829] "01" "01" "01" "01" ...
$ day_of_week : num [1:3817829] 3 3 3 3 3 3 3 3 3 3 ...
$ bikeid : num [1:3817829] 2167 4386 1524 252 1170 ...
$ from_station_id : num [1:3817829] 199 44 15 123 173 98 98 211 150 268
...
$ from_station_name: chr [1:3817829] "Wabash Ave & Grand Ave" "State St &
Randolph St" "Racine Ave & 18th St" "California Ave & Milwaukee Ave" ...
$ to_station_id : num [1:3817829] 84 624 644 176 35 49 49 142 148 141
...
$ to_station_name : chr [1:3817829] "Milwaukee Ave & Grand Ave"
"Dearborn St & Van Buren St (*)" "Western Ave & Fillmore St (*)" "Clark St &
Elm St" ...
$ usertype : chr [1:3817829] "Subscriber" "Subscriber"
"Subscriber" "Subscriber" ...
$ ride_length : num [1:3817829] 6.5 7.35 13.82 29.72 6.07 ...

summary(cyclistsdatav3) ##Statistical summary of data

trip_id start_time
Min. :21742443 Min. :2019-01-01 00:04:37.00
1st Qu.:22873747 1st Qu.:2019-05-29 15:46:38.00
Median :23962250 Median :2019-07-25 17:49:26.00
Mean :23915588 Mean :2019-07-19 21:43:54.38
3rd Qu.:24963667 3rd Qu.:2019-09-15 04:28:13.00
Max. :25962904 Max. :2019-12-31 23:57:17.00
end_time month date
Min. :2019-01-01 00:11:07.00 Length:3817829 Length:3817829
1st Qu.:2019-05-29 16:07:25.00 Class :character Class :character
Median :2019-07-25 18:10:00.00 Mode :character Mode :character
Mean :2019-07-19 22:07:10.93
3rd Qu.:2019-09-15 08:08:04.00
Max. :2020-01-10 01:06:36.00
day_of_week bikeid from_station_id from_station_name
Min. :1.000 Min. : 1 Min. : 1.0 Length:3817829
1st Qu.:2.000 1st Qu.:1727 1st Qu.: 77.0 Class :character
Median :4.000 Median :3451 Median :174.0 Mode :character
Mean :4.064 Mean :3380 Mean :201.7
3rd Qu.:6.000 3rd Qu.:5046 3rd Qu.:289.0
Max. :7.000 Max. :6946 Max. :673.0
to_station_id to_station_name usertype ride_length

Min. : 1.0 Length:3817829 Length:3817829 Min. : 1.02
1st Qu.: 77.0 Class :character Class :character 1st Qu.: 6.85
Median :174.0 Mode :character Mode :character Median : 11.82
Mean :202.6 Mean : 23.28
3rd Qu.:291.0 3rd Qu.: 21.40
Max. :673.0 Max. :177200.37

Key tasks:

• Aggregate your data so it’s useful and accessible
unique(cyclistsdatav3$usertype)

[1] "Subscriber" "Customer"

##Right now the usertype fields are "Subscriber" and "Customer" but I will
rename it to "member" and "casual", respectively instead.
cyclistsdatav3 <- cyclistsdatav3 %>%
 mutate(usertype = recode(usertype, "Subscriber" = "member", "Customer" =
"casual"))

##Check to see if the proper usertype is changed successfully.
table(cyclistsdatav3$usertype)

casual member
880537 2937292

##Creates plot to visualize how many total rides each user type has ridden
throughout the year.
cyclistsdatav3 %>%
 group_by(usertype) %>%
 summarize(ride_count = length(trip_id)) %>%
 ggplot(aes(x = usertype, y = ride_count, fill = usertype)) +
geom_col(position = "dodge") + labs(title = "Cyclistics: User Types vs.
Number of Rides", subtitle = "Sample of Two User Types", caption =
"Visualization created by Jessica Y. Yang", x = "User Types", y = "Number of
Rides (1e+05 = 100,000)")

• From the above graph, we can see that members rent the bikes at least 3 times more
frequently than casual riders do.

##Descriptive analysis on ride_length (in minutes).
mean(cyclistsdatav3$ride_length) #Average length of a ride

[1] 23.27578

median(cyclistsdatav3$ride_length) #Midpoint number in the ascending array of
ride lengths

[1] 11.81667

max(cyclistsdatav3$ride_length) #Longest ride

[1] 177200.4

min(cyclistsdatav3$ride_length) #Shortest ride

[1] 1.016667

##Or use the summary function to show all attributes.
summary(cyclistsdatav3$ride_length)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.02 6.85 11.82 23.28 21.40 177200.37

##Compare members vs casual users usage.
aggregate(cyclistsdatav3$ride_length ~ cyclistsdatav3$usertype, FUN = mean)
##casual > member

cyclistsdatav3$usertype cyclistsdatav3$ride_length
1 casual 54.09194
2 member 14.03776

aggregate(cyclistsdatav3$ride_length ~ cyclistsdatav3$usertype, FUN = median)
##casual > member

cyclistsdatav3$usertype cyclistsdatav3$ride_length
1 casual 25.83333
2 member 9.80000

aggregate(cyclistsdatav3$ride_length ~ cyclistsdatav3$usertype, FUN = max)
##casual > member

cyclistsdatav3$usertype cyclistsdatav3$ride_length
1 casual 177200.4
2 member 101607.1

aggregate(cyclistsdatav3$ride_length ~ cyclistsdatav3$usertype, FUN = min)
##casual = member

cyclistsdatav3$usertype cyclistsdatav3$ride_length
1 casual 1.016667
2 member 1.016667

##See the average ride time by each day for members vs. casual.
aggregate(cyclistsdatav3$ride_length ~ cyclistsdatav3$usertype +
cyclistsdatav3$day_of_week, FUN = mean)

cyclistsdatav3$usertype cyclistsdatav3$day_of_week
1 casual 1
2 member 1
3 casual 2
4 member 2
5 casual 3
6 member 3
7 casual 4
8 member 4
9 casual 5
10 member 5
11 casual 6
12 member 6
13 casual 7
14 member 7
cyclistsdatav3$ride_length
1 53.91131
2 15.30157
3 50.15133

4 13.62445
5 56.37403
6 13.67516
7 54.99280
8 13.36431
9 59.48967
10 13.70678
11 54.39567
12 13.87889
13 51.99404
14 16.17114

Analyze

##Analyze ridership data by type and day of week and visualize it.
cyclistsdatav3 %>%
 group_by(usertype, day_of_week) %>% ##Groups by usertype and day of week
 summarize(number_of_rides = n(), ##Calculates the number of rides and
average duration
 average_duration = mean(ride_length)) %>% ##Calculates the
average duration
 arrange(usertype, day_of_week) %>% ##Sorts by usertype and day of week
 ggplot(aes(x = day_of_week, y = number_of_rides, fill = usertype)) +
geom_col(position = "dodge") + labs(title = "Cyclistics: Day of the Week vs.
Number of Rides", subtitle = "Sample of Two User Types", caption =
"Visualization created by Jessica Y. Yang", x = "Day of the Week (start
Sunday)", y = "Number of Rides (1e+05 = 100,000)") ##Creates plot to
visualize the difference between the number of rides of a casual rider vs. a
member on each day of the week.

`summarise()` has grouped output by 'usertype'. You can override using the
`.groups` argument.

• Members use the service for more times in the week than casual members do.

• The number of rides for members are low on the weekends and high during the
weekdays. This makes sense because members will use the bike rental service for
commutes (ex. school or work) during the weekdays.

• Casual riders use the bike rental service more on the weekends than on the
weekdays. They are probably using it for sightseeing as most people are not
working on the weekends.

##Visualize the average duration for both casual and members on each day of
the week.
cyclistsdatav3 %>%
 group_by(usertype, day_of_week) %>% ##Groups by usertype and day of week
 summarize(number_of_rides = n(), ##Calculates the number of rides and
average duration
 average_duration = mean(ride_length)) %>% ##Calculates the
average duration
 arrange(usertype, day_of_week) %>% ##Sorts by usertype and day of week
 ggplot(aes(x = day_of_week, y = average_duration, fill = usertype)) +
geom_col(position = "dodge") + labs(title = "Cyclistics: Day of the Week vs.
Average Ride Duration (in minutes)", subtitle = "Sample of Two User Types",
caption = "Visualization created by Jessica Y. Yang", x = "Day of the Week
(start Sunday)", y = "Average Ride Duration (in minutes)")

`summarise()` has grouped output by 'usertype'. You can override using the
`.groups` argument.

• Casual riders use the bike rental service for a longer period of time per rental than
members do. This might be because members usually know which destination they
want to go to so they go straight to the destination. However, casual riders might be
doing some sightseeing around the city so they do not have a fixed destination.

##Visualize the total rides taken by members and casuals by month.
cyclistsdatav3 %>%
 group_by(usertype, month) %>% ##Groups by usertype and month
 summarize(number_of_rides = n(),
 .groups = "drop") %>%
 arrange(usertype, month) %>%
 ggplot(aes(x = month, y = number_of_rides, fill = usertype)) +
geom_col(position = "dodge") + labs(title = "Cyclistics: Month vs. Number of
Rides", subtitle = "Sample of Two User Types", caption = "Visualization
created by Jessica Y. Yang", x = "Month (starts January)", y = "Number of
Rides (1e+05 = 100,000)")

• There is a bell curve in both casual riders and members. It starts off low in January
and peaks in August, and goes back down in December. I think the reason why it is
higher during the months of June to September is because of school holidays. With
school holidays, there will be more people outside to rent the bikes. Sometimes, if
they are doing a family or friends activity, they can rent with their families or
friends which will thus increase the number of rides.

• How do your findings relate to your original question? And what story does your
data tell?

– As stated in the “Ask” section, the business task for this case study is to
discover how Cyclistic’s casual riders and members use their rental bikes
differently. Through my visualizations, I can confidently say that casual
riders and annual members have different uses for bike rentals. Annual
members are more likely to use it during the weekdays probably for
commute while casual riders are more likely to use it on the weekends for
leisure. The average casual rider ride duration is longer than that of an
average annual member. Regardless of being a member or not the peak
month to rent bikes is August. Since Chicago experiences inclement weather,
the usage of bikes during the winter season (November through March) is
evidently lower than that of the Summer (June to September).

• Is your presentation accessible to your audience?

– Yes, it is accessible to my audience.

Act

Final conclusion

• Annual members use the bikes more frequently than casual riders do.

• Regardless of being a member or just a casual rider, the peak month that bikes were
rented out is during the Summer season.

• Casual riders travel for a longer time period.

• Members ride less during the weekends while casual riders ride more during the
weekends.

Top 3 recommendations

• Encourage annual members to ride more on the weekends by giving them discounts
or extend their membership for a period of time.

• Release some sort of flash sale that have full annual member benefits for casual
riders so they can acquire more bikes and indulge in the benefits of being a member
(which might actually help convert casual riders into annual members after they
lived through the benefits)

• Offer a weekend-only membership at a different price point to entice casual riders
towards a full membership since they ride more during the weekends. This
weekend-only membership only unlock bikes on Friday, Saturday, and Sunday.

